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We examine the soluble magnetoelastic Ising model developed by Baker 
and Essam and give a detailed discussion of its thermodynamic properties. 
Particular attention is devoted to the properties of the magnetic phase 
transition at zero field, which is found to be either first order or second order, 
depending on whether the experiment is performed at negative or positive 
pressure. 
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1. I N T R O D U C T I O N  

When  trying to unders tand the behavior  o f  complicated physical systems 
one often tries to unders tand first the properties o f  a simplified model. Thus, 
magnetic  systems have long been studied by investigating the properties o f  
the Ising model,  which is a rigid lattice model.  This is clearly inadequate for  
describing the effects o f  the finite compressibility and the elastic degrees o f  
f reedom on magnetic properties. 

In  order to investigate these effects, various people a-7) considered models 
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where !sing spins are situated at the points of a compressible lattice. In order 
to caldulate the partition function and consequently derive the thermo- 
dynamic properties of these models, these works resorted to various approxi- 
mations. However, since one of the aims was to investigate the properties 
of the magnetic phase transition in compressible lattices, the fact that 
approximations which could not properly be justified had to be used was 
a serious drawback. 

Baker and Essam ~8) then developed the first soluble example of a com- 
pressible magnetic system: They considered a cubic lattice of Ising spins 
with elastic forces acting between nearest-neighbor spins in addition to the 
usual magnetic interaction. They assumed that no shear forces were present, 
and that both the elastic and the magnetic interactions of a nearest-neighbor 
pair depend only on the longitudinal component of the separation vector, 

where ri~ is the actual instantaneous separation vector connecting the atoms at 
the pair of sites (/j), and Ri~ is the equilibrium or rigid-lattice separation vector. 
They then found that they could reduce the classical statistical mechanics 
of this model to that of a rigid Ising lattice with an effective nearest-neighbor 
magnetic interaction coefficient Jeff �9 The original version of the Baker and 
Essam (henceforth to be abbreviated as BE) model assumed that the elastic 
interaction ~(~j) was a quadratic function and that the magnetic interaction 
J(~-) was a linear function. Subsequently this was generalized by Coplan 
and Dresden C91 to include quadratic J(~j). The generalization to arbitrary 
~(~) and J(~) was recently made independently by Baker and Essam C1~ and 
by Gunther. ml 

In Section 2 of this paper we present the statistical mechanics of this 
generalized Baker-Essam model in an ensemble (called the )t-ensemble) in 
which all calculations can be exactly reduced to the statistical mechanics of 
the rigid Ising model. Since the model is rather unphysical in that there are 
no shear forces at all to prevent large fluctuations in the shape, we proceed 
in Section 3 to discuss the question of the validity of the thermodynamic 
results obtained therefrom. We show that although the length of each row 
has abnormally large fluctuations in our ensemble, the volume in fact does 
not. We conclude therefore that the volume and the pressure can properly 
be used as thermodynamic variables to describe the state of the system. In 
Section 4 we calculate some of the interesting thermodynamic functions of 
the system, and show that Pippard's relations are satisfied. In Section 5 we 
discuss the changes in the nature of the magnetic phase transition of our 
model that arise due to the presence of elastic degrees of freedom. We find 
that, depending upon the externally imposed experimental conditions, the 

We received a preprint of this work while our work was being written. 
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transition either remains an "ideal" rigid Ising transition in the sense of 
Fisher (z~) or becomes renormalized in the sense of Fisher, (12) or else gets 
changed into a first-order transition. 5 

More specifically, we find that if the experiment is performed at constant 
pressure P, then for P > 0 the transition is second-order renormalized, for 
P < 0 (which in our model system corresponds to perfectly stable states) the 
transition is first order, and for P = 0 the transition is second-order ideal. 
In Section 6 we calculate the discontinuities which characterize the first-order 
transition for P < 0 and determine their behavior (i.e., how they tend to 
zero) when P approaches zero. 

The fact that, depending on the external conditions of the experiment, a 
compressible Ising lattice can have either a first- or a second-order transition 
has never been convincingly shown before. All previous approximate 
treatments of such systems which seemed to give rise to a first-order phase 
transition a-5) are misleading because the approximations used always break 
down in the vicinity of the Ising singularity. Consequently, when applied to 
the Baker-Essam model they give wrong predictions regarding its first-order 
transition. 

There is now convincing experimental evidence that the existence of  
first- and second-order variants of an Ising-like transition do in fact exist, 
namely the beautiful experiments on the order-disorder transition in solid 
NH4C1 by Garland and Weiner. (u) The dividing point between the two 
regimes is, however, at a positive P. We expect that our finding that the 
dividing point is at P = 0 is a result of the unphysical nature of our model, 
namely the total absence of shear forces. Indeed, Baker and Essam (1~ report 
that when infinitely strong shear forces are included in their model, a first- 
order transition occurs for all P, while when finite shear forces are included 
an approximate calculation leads to a division point at a finite, positive P. We 
have recently found that an anisotropic version of the Baker-Essam model 
can have the first-order transition at P > 0. 

2. STATIST ICAL M E C H A N I C S  OF THE GENERALIZED 
BAKER-ESSAM M O D E L  

Following Baker and Essam, (8) we assume a compressible Ising 
HamiItonian of the form 

H = ~, (P,2/2m) @ Z [4((~) + j(~ej) cr~rj] @ h Z cr~ (1) 
i ij i 

In this equation the indices i , j  refer to the points of a simple cubic d-dimen- 
sional lattice. The symbol ~i stands for a sum over all the N points of the 

5 We have already reported this result briefly for a special case. (za~ 
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lattice, while the symbol ~.(i~) stands for a sum over all nearest-neighbor 
pairs. With each lattice point is associated an Ising spin variable cr~ and a 
mass m, and nearest-neighbor points interact by means of both an elastic 
interaction ~ and an Ising exchange interaction J. Both of these interactions 
depend only on the projection of the instantaneous vector separation 
r~. = r~ -- r~ of a nearest-neighbor pair onto the equilibrium vector separation 
Ri~. ~ R~ -- R~.. This variable is denoted by ~ii : 

~ i j  ~ ( r i j  " RiJ)tl Rijl (2) 

It is this property of the interactions which allows the statistical mechanics 
of the magnetoelastic system to be reduced to that of a similar rigid magnetic 
system. The physical meaning of this property is that there are no shear 
forces in the lattice, and that if there were no magnetic interactions, every 
row and column would be a one-dimensional chain whose statistical 
mechanics is independent of all the other rows and columns. Baker and 
Essam is) originally introduced this model with a quadratic form for ~b(~ e) 
and a linear form for J(~). This was later generalized to a quadratic form for 
J(~) by Coplan and Dresden, (~ who also used a different ensemble to get the 
thermodynamic properties of their model, and to general forms for both 
~b(~:) and J(~) by Baker and Essam (1~ and independently by Gunther. (11) 
We will use the same ensemble employed by Coplan and Dresden, since it 
makes many results more transparent and easier to obtain than the one used 
by Baker and Essam. (8,1~ For  this reason, as well as for the sake of deriving 
some relations which we need, we now briefly describe the statistical mechanics 
of this model. 

The absence of shear forces causes the system to show no resistance to 
sideways (i.e., shear type) deformations of its shape. In order to somewhat 
rectify this behavior, we nail down the first particle of each row and column 
so that its position is fixed. The average length of each row (~(~J)~r ~:~), 
where r denotes some row, is then determined by introducing an appropriate 
Lagrange multiplier ~t, into the statistical operator p: 

r ( i i ) ~ r  

The physical significance of A, is that it is equal to the force that one must 
exert upon the rth row in order to determine its average length. From the 
form of p it is clear that all the average separations ( ~ j )  that lie in a single 
row r of the lattice are equal--simply because p is symmetric in all of the 
~:~j that belong to a single row. To make our discussion even simpler, we will 
assume that the entire system is cubic (i.e., all the rows have the same number 
of particles Nile), and that all the rows in all directions have the same average 



Exactly Soluble Magnetoelastic Lattice with a Magnetic Phase Transition 341 

length. Because we assumed identical elastic and magnetic interactions for 
all nearest-neighbor pairs, this means that all the ~, are then equal. We thus 
obtain the "A-ensemble," whose statistical operator is 

Pa ~ e x p  [--fi ( H  q-~  ~ ~ij)] (4) 
(ij) 

We now calculate the partition function Z for this statistical operator 
assuming, after Baker and Essam, cs~ that the elastic degrees of freedom can 
be treated classically. The partition function can be written in the form 

Z(~ ,  ~, h ) =  (27TFI7//3) dN/2 2 exp (--/3h 2 (xi) ~ qi# (5) 
{(~i) i" (i J) 

where 

qiJ ~ d~ exp{--/3[q~(~:) + A( q- J(~:) ai%]} (6) 

and where y[(~-) means a product over all nearest-neighbor pairs, while ~,~} 
stands for a sum over all the possible assignments of ~1  to all of the a~. 
Since the product a~aj can have only two values §  and --1, we denote by 
q• the corresponding values of q~j : 

q~(/3, A) ~ d~: e -B(~+a~• 
--co 

We can now write q~ as follows: 

qij = Ae -eJa~"~ 
where 

A(/3, A) ~- (q+q_)~/2 

Jeff(~3, ~) ~ --(1/2t3) log(q+/q_) 

(7) 

(8) 

(9) 

(10) 

Note that Jeff is a perfectly regular function of h and/3. Therefore one can 
write Z in the form 

Z = (2rrm/fi) aN/2 A aN 2 exp (--/3h 2 a i -  fiJefr 2 aiaj) (11) 
{ai} i (i j) 

where the sum Z~,} is equal to Zx(fideff, h), the rigid Ising partition function 
with the magnetic interaction Jeff �9 One can rewrite this as 

log Z(fi, A, h) = �89 q+q_] + log Z~(/3Yer h) (12) 

The average value of any dynamical variable of the form (R(se,s)) is calculated 
as follows: 

<R(~:/j)> = (1/O) X exp (f~h X a,) ~I q~n" (R)i j  (13) 
{at} ~ (mn) 



342 David J. Bergman, Yoseph Imry, and Leon Gunther 

where 

Q ~ ~ exp (flh ~crt) I-I qmn (14) 
{ ~ z }  ~ " iron) 

<R)ij ~ (1/qij) f d~ R(0  exp{--fi[~b(~) + )t~ + J(~) c~cq]} (15) 

Similarly to q~j, <R>~j can also have only two values, <R(~)>a, where 

<R(~)>~ - (1/q~) f d~ R(0 e-~{~+~ (16) 

<R>~ is clearly the average of R(~:~j), assuming that ~i~j = +1,  respectively. 
With the help of the two projection operators onto the two possible 

values of the product ~ ,  namely 

(1 -f- cr~j)/2 (17) 

we can write <R>~j in the form 

(R>~ s -= (R(~)>+[(1 -k- cr~j)/2] q- (R(~))_[(1 -- crier;)/2] (18) 

Consequently, the average (R(~i~-)> wilt depend on (e~j>, which is equivalent 
to the simple rigid Ising average (~r~j>~ but with the effective magnetic 
interaction coefficient Jeff. Hence we obtain 

(R(~i~-)> = <R(~)>+[(1 + <cr,cr~>~)/2] -t- <R(~))_[(1 -- @ie~>~)/2] (19) 

The two terms �89 4-<e~e~>i) are obviously the average probabilities for 
finding e~-  = -4-1. Thus, this formula has a very simple intuitive meaning--it  
is just an application of the usual theorems on conditional probability. 

Similar considerations can be used to calculate <S(~) cr~ej>: 

= <S(~)>+[(1 + @,~>~/2] -- <S(f)>_[(1 -- <eie~>~)/2] (20) 

and this, too, is nothing more than a simple application of conditional 
probability. 

3. R E L I A B I L I T Y  OF T H E  X-ENSEMBLE 

The main reason why we perform all the statistical mechanical 
calculations using the )t-ensemble is that only in this type of ensemble is the 
model we discuss rigorously reducible to the corresponding rigid model. 6 By 

e Instead of the term A ~2(~) ~j, we could have added a more general type of term A 52(~j) 
f(~r to the exponent of the statistical operator without spoiling its solubility properties. 
Anything else will not do. 
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contrast, Baker and Essam have chosen to use a different ensemble in their 
calculations, (Sa~ i.e., one where every row of atoms in the lattice is 
constrained to have a fixed length, rather than merely having its average 
length determined as in the A-ensemble. Their partition function, however, 
is obtained by performing a saddlepoint integration over the ,~-ensemble 
partition function. It is therefore perhaps no great wonder that similar results 
are obtained in both calculations. But since it is not superfluous to justify the 
use of saddlepoint integration in solving the model, we prefer to adhere to 
the simpler basic formalism of the A-ensemble, and to show that the thermo- 
dynamic results obtained from it are expected to be reliable, i.e., that they 
will not change if a different but still reasonable ensemble is used. 

The reliability of our thermodynamic results is open to doubt mainly due 
to the possibility of large fluctuations in the volume or shape. 7 We will there- 
fore focus our attention on these aspects. Since there are no shear forces to 
resist shearing strains in the lattice, one might have expected to find enormous 
fluctuations in the shape of the system. These are largely prevented by 
nailing down the first atom of each row. In order to determine what still 
remains of these fluctuations, we first calculate some correlation functions: 

<Af.Afk~> 

= o/o) z g 
(od (21) 

for (g) =/= (kl) 

we have introduced the notation A R  = - - R -  ( R ) .  Noting that, Here 
according to (18) and (19) 

(~)iJ -- (~:iJ) = �89 -- (~:)-)A(~,cr~) (22) 

we easily find that 

</']~i~ e~/c~) = [�89 -- (~)_)]2(./l(o-iffj)A(Q.k&t))i for (ij) =A (kl) (23) 

Using (19) to get (~ j )  and (~j ) ,  we can also find 

(zl~: 5) = (A~:+2)+ [(1 q- @,aj)z)/2] q- (Ase_2)_ [(1 -- @,~.)z)t21 

q_ [�89 _ (~)_)12 (A(~,crj)zbz (24) 

where 

AR(~)~: ~ R(~) --  (R(~)):L (25) 

7 W e  are indebted to Michael  E. F isher  for  drawing our  a t ten t ion  to this p roblem.  
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We can now calculate the mean square fluctuation in the length L of a single 
row"  

(AL ~) = d~ij -- [�89 -- (~)_)l 2 A(cri~j 
(i~) r �9 I 

-t- ~ {(A~+2}+ [(1 + (~l~j)~)/2] 

@ ( A ~  2)_ [(1 - -  <~ i~ ) ) i / 2 ]}  (26) 

On the rhs the second term is clearly of order O(N1/a). This is also the size 
of the first term, notwithstanding the fact that it includes a double sum, 
because the correlation function 

(A (cri(r~) A ((rkcr~))i (27) 

where (ij), (kl) are nearest-neighbor pairs, is known to have a finite range for 
the two-dimensional Ising model, and is expected to have similar behavior 
for the Ising model in any number of dimensions. Thus, the mean square 
fluctuation of the length L of a row satisfies 

(AL 2) = O(L) (28) 

rather than 
(AL 2) = O(1) (29) 

which is what we would expect for a realistic system of dimensionality greater 
than one. 

An important consequence of the previous considerations is that the 
correlations between different ~:ij are short-ranged. This holds not only for 
the simple correlation given in (23), but for higher-order correlations as well. 

We now define the volume of the lattice by 

d d 
rI x i) : (30) V 
a=l i a=l i 

where x~ is a new notation for ~j  : It denotes ~j  for the case where the 
equilibrium separation vector Rij lies along the positive a axis. From what 
we said previously, we can now estimate the difference between the average 
volume as defined in (30) and the much simpler expression N(x}a: 

(I/Na-1)( a I]= 1 ~ x~i) --(1/Na-1) cr l~I ( ~ "  xai) ~ O(1) (31) 

Furthermore, we can estimate the mean square fluctuation of V: 

(1IN 2a-2) A x~ = (1IN 2a-~) O(N ~a-~) = O(N) (32) 
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The last result is the usual one for (A V 2) and it means that the relative 
fluctuations in volume in the ?t-ensemble are small and that the average 
volume has a welt-defined value and is a perfectly respectable thermodynamic 
variable. Equation (31) tells us, in addition, that instead of the cumbersome 
expression (30), we can use V = N(~:) a for the average volume. 

I t  is perhaps surprising that despite the abnormally large fluctuations 
in L [see Eq. (28)], the fluctuations in the total volume turn out to be perfectly 
normal. To see the reason for this, let us look more closely at the three- 
dimensional case. For  a normal,  realistic system the fluctuation in the length 
of a row is given by (29). But different rows are not independent in their 
fluctuations, due to the presence of  shear forces in the system. In fact, f rom 
the Debye approximation for the long-wavelength part  of the phonon 
spectrum one can show that the correlation function of the positions of two 
atoms in the system includes a long-range part: 

(Ari Arj) = O(1/1 rij I) for large I rij I (33) 

The volume of  such a system can be written as 

V ~ a 2 Z L,  (34) 
f 

where a is the average lattice parameter  and ~ Lr stands for the sum of the 
lengths of  all the rows lying in a certain direction. The fluctuation in V is now 
given by 

(A V ~) = a 4 Z Z (AL,  AL, ,)  = a" ~ Z O[1/(r -- r')] = O(V) (35) 

where r - -  r '  stands for the distance between the rows r, r'. The same result 
is obtained for the BE model in an entirely different way: Since (AL~ AL~,) 
has a strictly finite range, we can write 

(A V 2) = a' ~ O(L) = O(V) (36) 

So it looks as if nature has conspired to keep the important  thermodynamic 
variables normal in this otherwise not very physical model! 

4. T H E R H O D Y N A H I C S  O F  T H E  C O H P R E S S I B L E  I S I N G  
M O D E L  s 

The thermodynamic potential that is the natural function of T, A, h - - the  
parameters which characterize our statistical operator-- is  - - k T l o g  Z. The 

8 Some of the results in this section have also been derived independently in Ref. 10, using 
a different ensemble. Our derivation is somewhat simpler, and we include it both for the 
sake of completeness and also because we need the thermodynamic functions in order 
to discuss the magnetic phase transition in Sections 5 and 6. 
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thermodynamic variable that is conjugate to ?t is easily found by differentiating 
this potential with respect to )t 

(8/8;k)[--kT log Z(/3, ;~, h)] = dN(~) (37) 

Using (19), the average interparticle distance a is given by 

a ~ (~) = (~)+[(1 + (chae)~)/2 ] + (~)_[(1 - ( ~ 2 Z ) / 2 ]  (38) 

In order to calculate (Sa/g?t)r.~, we first need to note that 

--(lift) 8(~)• = (A~:~).  (39) 

and that 

1 8(crx~)z 1 ~(~71ff~) I O Jeff 1 O(fflO'2) I 1 
~- 8,~ = /3 8Jeft S A  - -  /3 8Jeff 2 ((~)+ - -  (~:)-) (40) 

We can now easily obtain the following result: 

1 8a (A(I~ m) 

= (Ase+2)+ 1 + (cq%712 + (Ase_2)_ 1 -- (crlc@Z2 

1 1 a(ffl(Y2) I (41) 

When h ----- 0 there is a simple connection between 8<(h~2),/SJ~f and the 
specific heat of the rigid Ising model at h = O: 

8(E/N) h=0 dJSr 8(cqcr~)~ h=0 (42)  
cz -~= 8T -- T 8Je~ 

As a result of this, the derivative 8QrW2)i/SJerr which appears in (41) is 
negative for sufficiently small h. Therefore all the terms on the rhs of (41) are 
positive, and consequently 

--(1/fi)(Sa/SA)r.n > 0 (43) 

for sufficiently small h. The system thus always satisfies the stability 
requirement for small h. For h = 0 we can use (42) to write (41) in the form 

1 8a 
2 2 

2 dkfisJ~rf 
(44) 
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The internal energy per particle of the system is given by 

N ---- N (H> =- d q- d <r -f- J(~)>+ 1 -~- <O'10"2> I 2  

q- <~b({:) -- J(~)>_ 1 -- <cq~.>~ ] q- h@>i (45) 
2 

where we have used (1), (19), and (20). 
In order to calculate the specific heat at constant 2t, ca, note that the entropy 

S is given by 

S = (a/ar)[kTlog Z(/3, ,~, h)] = --kfi2(a/a/3)[1/fi) log Z] (46) 

and that consequently 

c ~ _ T  ( a s )  _ 
k - - N k  ~T--a,~ 

= 1 / 3 2  a~ log Z 
N aft2 

aS 1 ~ 1 

(47) 

We will calculate ca only for h = 0. In doing this, we will encounter the 
derivative of (~h%)z with respect to /3. Besides the regular dependence of 
@~o-2>~ on t3 that is found in a rigid Ising lattice, we now have also Jeff 
depending on/3. Therefore we write for this derivative 

d<oio251 ~(o-1ff251 ~<oio251 ~]eff(/3, 1) 
-- a/? q- a Jeff 8/3 (48) 

Using the fact that the thermodynamic functions of the rigid Ising model 
depend only on the product ~3Jeff, as well as Eq. (10) and the relations 

--a(log q• = (~(s e) + as e ~ J(~:)>• (49) 

we can now write 

d<(Yl(Y2>I -- Of~ (1 @ /3 ~Jeff] 

O<~a~2)i 1 
~3 2Jeff ( (r  + ;~ + J)+ -- ( r  + Z~ --  .r>_) (50) 

We now note that the rigid Ising specific heat at h = 0, ci(/3Yeff), can be 
written as follows: 

c, = --dk/32&ff ~<~1~2>,/a/3 (51) 
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By using (47) together with (50) and (51), we now get, when h = 0, 

c~(5, a, h = O) d [ 
k = 2 @ d~2 L(Z(~ -I-/~ -@ j)+2)+ 1 -t- <~176 

+ (A(G~ -p- a e -  J)-Z}- 1 -- ~2 qaq2}l ] 

ci(SJe~f) ( r  + a~ + J>+ - ( r  + a~ - j>_ 
Jr k ( 2Jeff ) ( 5 2 )  

Again, this is a sum of positive terms. By continuity, Ca is positive for 
sufficiently small h. 

Equations (44) and (52) show not only that --(Oa/~A)r.n and ca are 
positive, but also that if the ( }~ averages exist (i.e., if the integrals are 
finite), then, except for the Ising phase transition point, these quantifies are 
intensive, i.e., of order one, as they should be. This again shows that the 
A-ensemble is a perfectly well behaved one away from the Ising transition: 
All the relative mean-square fluctuations of thermodynamic quantities are 
of order 1/N. 

By differentiating Eq. (38) with respect to /3, using (50), (51), and the 
fact that 

- -  a<~:>./a 5 = <Zl~:+ A(r + ,~: :f: a)• (53) 

we get for the thermal expansion coefficient at constant A and h ----- 0 

~a 1 + <~1%)I 
= <A~:+ ~ (r  + a~ + J)+>+ 2 

q- (A~_ A(~ -k- A~: -- Z)_>- 2 

+ ((~:>+ - 4~:>-)((</' + ~: + J>+ - <4 + a~: - J>_) 

X CI(~Jeff) (54) 
4&5~J~f 

The second-order Ising phase transition occurs at a definite value of 2t 
for every/?, Ao(/3), which is determined by the equation 

]3Jeff(/3, 2tc(/?)) = (]?J)c ( =  0.4407 for d = 2) (55) 

The slope of the line of singular points 7 ~ )  is determined by differentiating 
this equation with respect to/3, giving 

~J~ff ~J~f dA~ 
J~" + 5 -@-5 + 5 ~ d~ - 0 (56) 
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With the help of (10), (49) [see also (50)], and 

--(1//3) O(log q• ----- (~:):L (57) 

we get that 

- 8  d;~o(~)/a~ - -  ( ( r  + ~ f  + J ) +  - ( ~  + ~ f  - ~ ) _ ) ( ( ~ ) +  - ~ f )_ )  (58) 

We can compare these results with the Pippard relations, which are 
expected to hold at h = 0 along 1~(j3) from general thermodynamic 
considerations. There are two of them: 

ca ~ dfl" d)o ( 0 a )  (59) 

where the sign ~ stands for asymptotic equality of the divergent parts of 
each side near ,~o(fl). By substituting the singular parts from (44), (52), a n d  

(54), and using (42), these Pippard relations are easily seen to hold. With 
their help one c a n  a l so  obtain the general result that the specific heat at 
constant a ~ (~:~, ca, which is the same as the specific heat at constant 
volume c~, has its main divergence canceled at Ao(/3): Starting from the 
thermodynamic expression 

ca cA 3[[ ~ / [  ~ 2 Oa 

and using (60), we get that 

k = k -~fi a 

(61) 

0 (62) 

where (59) was used to get the final equality. By a more detailed calculation, 
o n e  c a n  show that ca in fact remains finite but has a cusp at ~(13), as predicted 
by Fisher's renormalization theory cm and as also found by Baker and 
Essam.(S,t~ 

5. M A G N E T I C  P H A S E  T R A N S I T I O N S  

From the previous section it is clear that the BE compressible Ising 
model undergoes a phase transition that is usually of the same form 
qualitatively as the rigid Ising phase transition when h = 0 and when ;t is the 
additional externally determined thermodynamic variable; i.e., it is a second- 
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order transition, and the critical exponents are the same as in the rigid Ising 
model. 

An entirely different picture emerges if instead of controlling A we control 
the pressure P. The pressure is calculated as follows: First we make a 
Legendre transformation from 2t to its thermodynamically conjugate variable 
d N a .  The appropriate thermodynamic potential is 

F ( T ,  a, h) = - - k T  log Z - -  dNa2t (63) 

and this is numerically equal to the Helmholtz free energy F ( T ,  V, h). The 
pressure is given by 

8 F  O_P 8a d N ~  A 
P ==- 8 V - -  8a 8 V - -  d N a  a-1 - -  a a-1 (64) 

If  P is given, this constitutes an equation for ~ in terms of P and T, which we 
rewrite as 

a = ( ~ / p ) l / ( c ~ - l )  (65) 

A schematic drawing of both sides of this equation as functions of ;~ for a 
fixed/3, h = 0, and several values of P is shown in Fig. 1. Although the total 

P<O 

l 

P>O 

.7 / / /~  

/" "/" 

// 
/ 

? I -'--- 
1 
! 

w 

he ?c 

Fig. 1. Schematic drawing of the two sides of Eq. (65) as 
functions of A. The two full wiggly lines represent particular cases 
of the function a00. In the graphs we show a section of the 
function a(A) that  includes a point of infinite slope A,, as required 
by Eq. (44). The three dashed lines represent (,~/p)~/(~-z) for 
various fixed values of P. The infinite slope of a(A) will clearly 
bring about  a triple intersection in the vicinity of & for P < 0. 
The hatched regions denote the area enclosed between two 
intersecting lines. These areas determine which of the inter- 
section points corresponds to the stable equilibrium state. 
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number of solutions of  this equation for any given P will depend upon details 
of the model such as the exact forms of  ~(~) and d(~), one can ensure that 
there will be only one solution for most values of P by making ~(~) increase 
sufficiently rapidly for large ~. But no matter what we do, there will always 
be three solutions when for negative P the two curves intersect sufficiently 
close to A,, where a(A) has an infinite slope as required by (44). 

In that case we have to examine the Gibbs free energy to determine which 
solution minimizes i t - -only that solution will correspond to a stable equi- 
librium state. The Gibbs free energy at h = 0 will be given by 

G(T, P)  ~ F(T, V) + P V  = - - k T l o g  Z --  dNaA + (h/a ~-1) Na ~ 

= - - k T l o g  Z --  (d --  1) NaA 

= - - k T l o g  Z -  [ ( d -  1)Nha/(a-1)/P a/(a-1)] (66) 

after we have substituted A as a function of P, T everywhere. Instead of doing 
that, we continue for a while to keep A as an independent variable in the last 
line and define a new auxiliary function: 

F(T, P, A) ~- - - k T l o g  Z(fi, A) --  [(d --  1) Nha/(a-1)/P1/(~-~)] (67) 

The derivative of this function is given by 

DFI~A = dN[a -- (AlP)I~ (a-~)] (68) 

i.e., it is equal to the difference between the ordinates of  the two intersecting 
graphs in Fig. 1. By integrating it between two points of intersection Aa, A2, 
one immediately finds for the difference in the Gibbs free energy 

AG = _P(T, P, ~2) --  F(T,  P, ha) ----- dN f~l [a -- (ALP) 1/(a-l)] dh (69) 

i.e., the area bounded between the two curves. One immediately sees that the 
middle intersection point is at best a saddle point of G, while only the two 
extreme points are local minima. Of these, the one next to the larger enclosed 
area also has the lower value of G, and thus describes the stable equilibrium 
state. 

Consequently, if we vary P while holding T fixed, or vary T while 
holding P fixed, the system will usually undergo a phase transition at some 
point. For  positive P this will be a second-order phase transition with infinite 
magnetic susceptibility, but with renormalized critical exponents, in 
agreement with Fisher's renormalization theory. (~2) This was also found for 
this model by Baker and Essam. (s,~~ But for negative P there will occur a 
first-order phase transition, with a finite jump in A, a, V, and E before the 
second-order singularity is reached. 

822/7/r 5 
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These properties may also be obtained in a more usual but less trans- 
parent way by first calculating the isothermal compressibility Kr : 

( ) da [~()t/aa-Z)] d--I I (~A) 
Kr--1 _ V -~-#- : --Naa ~ ~a ~ -- d P da a-~ Fa 

(70) 

where we have used V ~ Na d and P = ,~/a a-a. Substituting from (44) and 
(42), we get 

1 _ d - -  1 p +  1 [< L: ) 1 +(~rl~2>x +</1#_~>_ 1--<~lcrz> I 
Kr T ~ .-A-+Z + 2 2 

Cl 
+ 4kdfl~jgff ( ( f )+  -- (~:)_)2] -a (71) 

The second term on the rhs is always positive and usually much larger than 
the first term (since Kr ~ 1/P for reasonable pressures in any real solid or 
liquid), except at the Ising transition point, where it vanishes. Therefore, 
while for P > 0, Kr is also always positive, for P < 0 it will become negative 
in a small interval around the Ising transition point. 9 If  the usual Maxwell 
construction is now applied, one again obtains the first-order phase transition 
for P < 0. We stress, however, that in our rigorous derivation the Maxwell 
construction is obtained automatically, as it should be. 

When the experimental conditions are such that the volume V or the 
average lattice parameter a is under control, we find that the transition is 
always second order with renormalized coefficients. This was also found by 
Baker and Essam, CS,i~ and is again in agreement with Fisher's renormalization 
theory.(12) 

We would like to point out that the conditions where we find a first- 
order transition intervening before the second-order transition can occur are 
completely different from those one would expect from the various 
approximate methods of treatment. (~-5) Since we have treated an exactly 
soluble model, this means that these approximations must break down. We 
will analyze some of these approximations and the reasons for their failure 
in a future article. 

Our result is also different from what one would expect from Fisher's 
renormalization theory, (lz~ but this is due entirely to an implicit assumption 
made by Fisher. When that assumption is removed, it is found that results of 
the type we have found are to be expected. (13) We will discuss this question, 
too, in detail in a future publication. 

o This fact was first pointed out in Ref. 9. But they do not mention explicitly the possibility 
of a first-order phase transition. 
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6. PROPERTIES O F  T H E  F IRST-ORDER P H A S E  T R A N S I T I O N  

We have shown that in the region P < 0 if the system is cooled f rom 
a high temperature, it undergoes a first-order phase transition f rom a para- 
magnetic to a ferromagnetic or antiferromagnetic state. In order to calculate 
the magnitude of  the various discontinuities that occur in its thermodynamic 
state, we must first solve the simultaneous equations 

a(2 h , T )  = (,~I/P) 1/r (72) 

a(2t 2 , T )  = (2t2/P) 1/(d-1~ (73) 

-t "`1~ [a(/~, T )  - -  ( f i /p) i / (a-1) ]  d/~ = 0 (74)  
, )  

,/1 

to determine T, t 1 , and )t 2 that characterize the transition. Here ;~1 and ha are 
the two extreme intersection points in Fig. 1. We proceed to do this for 
the vicinity of  the boundary between the first-order and the second-order 
regimes, i.e., for P close to zero. 

In that case, both A1 and ~2, as well as the intermediate intersection 
point Ao, are very near to he(T), which is the singular point of a(A, T), i.e., 
the point of  the Ising transition. From Eq. (44) and the fact that  f iJef f( f i ,  A) is 
a regular function of h, it is clear that for ~ close to ;~c one may write 

a(~, T) = ac 4- b: F ] ,~ - -  )~ ]1-~ for 1% t,(T) (75) 

where ac ~- a(h~(T), T). The coefficients b+ and b_ and the indices c% and ~_ 
characterize the critical behavior on the two sides of  ;~.  To make the 
discussion more definite, we assume that A < hc corresponds to the ordered 
(say, ferromagnetic) s ta te-- in  that case, b_ and ~_ correspond to the ordered 
state, while b+ and ~+ correspond to the disordered (i.e., paramagnetic) 
state. 1~ Equation (75), where the linear term in ~t - -  Ac is neglected, is only 
correct when ~+ and ~_ are nonnegative, i.e., when cx is infinite at ~ ,  as 
indeed seems to be the case for the Ising model. The case where c~ = 0, 
corresponding to a logarithmic infinity (e.g., the two-dimensional Ising 
model), is included in our discussion. 

In order to solve Eqs. (72)-(74) we first assume that a+ = c~ ~ o~ and 
b+ = b_ --= b. While this is only true for the two-dimensional Ising model, 
we shall see that when b+ v ~ b_ (which is probably true) or even when ~+ v~ a 
(which is probably untrue) we get qualitatively similar results. 

I f  we use Eq. (75) to substitute in Eqs. (72) and (73) and expand the 
rhs in a Taylor series around )c ,  we now find 

= t~ ]  4- ~ t--P-- ~ - ~ i  (76) 

z0 The traditional notation is cg,.  instead of ~_, c~+. We use the latter notation because 
it is more convenient and less susceptible to typographical errors. 
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where the upper sign refers to ;~1 and the lower sign refers to A 2 , if we assume 

Using the same expansions, Eq. (74) becomes 

Zl)[a0 - -  + 2 - -  (I a, - -  - - t Z , -  A0 

1 [ ~, ]-(a-~)/(~-~) (;~x - -  A~) 2 - -  ( ~2  - -  Ao)  2 = 0 ( 7 7 )  
2 ( d - -  1) k--if-I [ e l  

In order to find a solution to Eqs. (76) and (77), we note that since we have 
approximated a(A, T) by a function which is odd in A -- Ac, and (AlP)Z/(a- l )  

by a linear function of A -- A~, we can expect A0, the middle intersection 
point in Fig. 1, to coincide with ;~ when the hatched areas are equal. 
Following this intuition we try to construct a solution by first choosing T to 
make ;~ a solution of (76). This requires that T be chosen to satisfy 

a ,  = (A~/P) 1/~a-x) (78) 

It  immediately follows from (76) that the two extreme intersection points 
~ and A~ satisfy 

IA~--A,[  = l A 2 - - a ~ l  (79) 

and consequently that (77) is automatically satisfied. What we have shown 
here is that the two extreme intersections in Fig. 1 are symmetric 
(approximately) about the middle (singular) intersection point. 

From (76) and (78) we furthermore see now that 

] ha -- A [ = �89 A a -- A~ [ = l(d -- 1) ba~-2P  I~/= ~ I P 11/~ (80) 

The jump in the lattice constant is given by 

A a  ~ I a(Ax, T)  - -  a(a~, T)I  = 2 b  I A1 - -  a011-~ ~ [ e 1(~-,)1~ (81) 

while the jump in volume V is given to lowest order in P by 

A V = dNaa~ -x  A a  = 2 d N b a ~  -~ [ A~ - -  A e 1 ~-~ ~ [ P Ia-~>/~ (82) 

In order to calculate the jump in the spontaneous magnetization (@, we 
note that on one side of the transition at h ----- A2, (~r) = O, while on the 
other sidO ~ 

Je f f (T ,  Ax) Jeff(T, he). B 
( ~ >  ~ k ~ T  k~T ~ IAx - Ao I ~ ~ I P I a/~' (83 )  

~1 See Eq. (2.40) of Ref. 12 and discussion thereof. 
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Here/3 is the critical index which characterizes the rigid Ising spontaneous 
magnetization. Finally, to calculate the jump in entropy S, we first note that 
from (46), (12), (10), and (37) it follows that the singular parts of a(,1, T) and 
S(,1, T) (i.e., the parts that have an infinite derivative) denoted by Sing(a) 
and Sing(S), respectively, are connected as follows: 

g ( - - k T l o g  Z~) ~flJeff] [ ~ S i n g ~  Sing 

{. e ( - -kTlog  Z~) eflJeff/~flJeff] 
Sing t 8,1 ~ / ~ /  

8,1 
= - - S i n g ( a ) . d N .  (-b-~)~sef~=eons t (84) 

Since/3Jer~ is a regular function of Tand  ,1 [see Eq. (10)], to lowest order in P 
we can take fiJeff = (fiJ)~ [see Eq. (55)], and using (75), we can thus write 

Sing(S) = (d,1ddT) d N  Sing(a) (85) 

The jump in S thus becomes 

A S  = (d,1~/dT)dNAa ~-~ [ P  1~1-~)/~ (86) 

From this, (82), and the Clausius-Clapeyron equation we now find 

dP,  _ A S _ d , 1 ,  1 (87) 
d T  A V d T  aa~ -~ 

This result, valid for small P < 0, may be compared with the analogous result 
for P > 0 when there is no first-order transition: Differentiating the equation 
,t = Pa e-i, we get 

[ ( )  d`1~ = aa_l dP~ ~a + -~  dT  l d T  -dT + Paa-2(d --  1) - ~ -  a r 

By Eq. (60), the expression in square brackets has its main divergence 
canceled. It may further be checked, using Eqs. (44), (54), and (58), that it is 
in fact finite. Consequently, in the limit when P --+ 0 through positive values 
we regain Eq. (87). Thus we have shown that the line of transition points 
Pc(T) has a continuous derivative at the boundary TB between the second- 
order and the first-order regimes. Note that this result, which stems from 
Eq. (85), is independent of the simplifying assumptions that we made 
previously, i.e., c~+ = ~_, b+ = b_.  

The boundary point can be shown to be a tricritical point in the sense 
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of Griffiths. (15) The tricritical point of  this model will be discussed in a 
forthcoming article. 

Equation (87), taken together with (58), also shows that we can easily 
transform the critical behavior obtained in Eqs. (80)-(83) and (86) as a 
function of P to a critical behavior as a function of T. In these equations 
P and T always refer to a point on the line of first-order phase transitions. 
On that  line, close to P = 0 and T = T~, we can write 

p ~ dP,  ( T  _ TB) = dh,  1 ( T - -  Tn) (89) 
- -  ~ d T  a a-1 

Because the coefficient of ( T -  TB) is neither zero nor infinity at TB, the 
exponents that  describe the critical behavior of the first-order discontinuities 
as functions of T - -  Tn are the same as those obtained for the critical behavior 
in terms of P, i.e., 

AA =-- I A 1 - -  2ts ] N I T - -  TB 11/% A a  ,-~ I T - -  T~ [(1-~)/~ 

A V , ' ~ q T - - T B I  (z-~)/~, (or) ~ [ T - - T , [ ~ / %  ( A S ) ~ ] T - - T B [ ( 1 - ~ ) I ~  

(90) 

I f  we want to relax the assumptions that we made before and allow for 
b+ v ~ b_ and ~+ v~ ~_,  the solution of Eqs. (72)-(74) becomes more difficult, 
and is treated in detail in the appendix. Qualitatively though, there is very 
little change in the results: I f  we still assume ~+ = ~_ ~ ~, but b+ @ b_,  
we still find 

A 1 - -  A~ ] = A1 I e ]1/~ (91)  

A s - -  A~ I = As  I P  f ~1~ (92) 

but A~ ~ As,  and they are no longer so easy to calculate. Instead, we find 
that  A~, As,  and T are solutions of  the following set of  equations, obtained 
from (A.12)-(A.14) by setting ~+ = ~_ ~ ~: 

b _ A ~ _  ~ _ b + A ~ _  ~ _ 2 - -  o~ A I A 2 ( b _ A I ~  _ b + A ~ a )  
o~ 

1 

b A ~-~' b_A 1-~ 1 (d - -  1) a~ -s (As - -  A1) 

(93) 
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F r o m  these equations one may easily see that  if e~ ~ 1, a good approximat ion 
to the solution is obtained by writing 

I Az --  A [ = [(d - -  1) b_aa~-2P 11/~ (94) 

I As - -  ke I = I(d - l) b+aa~-2P 11/~ (95) 

ao  - ( a d P ) i / ( ' ~ - 1 )  = 0 (96) 

where the last equat ion serves to determine T. In this approximat ion we 
again get A 0 = Ac �9 

I f  we assume o~+ :/: a_ ,  as well as arbi t rary b+ and b_ ,  we get the following 
results: 

[A1 - -  ")% ] : A1 [ P 111~>, I ~2 - ~c [ = A2 I 1" 11/~> (97) 

where o~> is the larger of  the two exponents ~+ and ~_.  I f  we assume, to be 
specific, that  ~+ > ~ ,  then we find [see Eqs. (A.15)-(A.17)] 

[A2 - -  A, = 1~(2 - -  ~ + ) ( d -  1) b+a,a-~l' l 1~"+ (98)  

[A ,  - a~ = [o~+/(2 - ~+)]1 A2 - A~ I (99) 

~+l(2 c%)(d 1) a-2 I{ , -~+) /=+ "~'{__~__)~/(a-z' - -  - -  b + a ~  P - =  a ~  - -  0 o o )  

where the last equat ion again serves to determine T. 
F r o m  Eqs. (94), (95), (98), and (99) all the results follow in the same way 

as they do f rom (79) and (80). 

A P P E N D I X  

In order to solve Eqs. (72)-(74) for  small, negative P when b+ 4: b_ 
and /or  ~+ :/: ~_ ,  we first assume, to make matters  quite definite, that  we 
either have ~+ = ~_ but  b+ > b_ ,  or else we have ~+ > ~_.  In bo th  of  
these cases we can convince ourselves that  the three intersection points 
Ao, A1, A2 satisfy the following inequalities (see Fig. 2) 

A 1 < h ~  < A  o < h 2  (A.1) 
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A ~  t-a- 
a= *b- Ik-X~l 
r 

\ \  

x 
Fig. 2. Schematic drawing of a(A, T) (the wiggly line) and (A/P)Z/(e-z~ (the straight line) 
as functions of I for fixed T and P, using Eq. (75) as an approximation for a and the linear 
approximation for (A/P)ll (a-~, for the case where the enclosed areas between the two 
curves are equal. The two approximations used for a are indicated on the graph in the 
appropriate regions I ~ Io. We have assumed that either c~+ > c~, or % = c~_ and b+ > b_ 
in order to get the intersections in the sequence indicated, i.e., tz < t, < A0 < t~. 

for  sufficiently small P. Using (75) and a Taylor  expansion for  (t/P)1/(a-l), 
we can write the following equations for  the three intersection points: 

a ~ -  ( ~ _ ) ~ / ( , z - ~ ,  b + I l o _  ~/~ l~-~+ 1 (_~_)-(d-~,/,~-~, Ao h~ 
d - - 1  P 

(A.2) 

a_(__~) l /Ca-X 'b+[A2_A~l~_~+ 1 ( t ,  I-ca-z)/'a-~) 1 t2 1, 
d -  1 \-P--] I 

(A.3) 
- 1(_~_)-,d-~,/(,-1, 

ao _ (__~_) ~/(a ~' = _b_ l h1_ A~11-~- + ~ IA~--A~,[  

(A.4) 

To  these we must  add the "equal  area" equation, obtained f rom (74) by 
using the same expansions: 

(t2_ tl)[ ac[ - -  l[(o~--llj -t- 2 - ~ _  I ~1- he 

L (_~__)-(a-z)/(a-1) 1 [(Ax _,~.)~_ (,~_~.)2] = 0  (1.5)  
2(d 1) I P t  

Equat ions (A.2)-(A.5) determine 2~0,11,12,  and 7". If  we substitute in them 
the following ansatz, 

t A o - A , I  = A o l P I  1/=+, tA1-Ar = A z I P I  1/~+, IA2-Aol  = A 2 1 P I  1/~+ 
(A.6) 
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where Ao, Az, A~ are positive coefficients which do not depend on P, we 
find the following equations for Ao, A~, A~, T: 

1 (Ae ~-(a-~)/(a-1)A0 (A.7) 
= b+A*~ d - 1 \ P  ] 

= b+A~_~+ 1 ( 2re ~1 -(e-z)/(a-a~ 
d -  1 \P--]  Az (A.8) 

1--c~ i (a+-a_,"/~+ 1 (_%e) -(d-2)/(g-1) 
= - - b _ A  1 - ] P  @ ~ ' ~ -  - -  A 1 

[ a ~ -  (~)l / (g-- l ' ] l  P I -(,-~+,/~+ (A1 + A2) 

(A.9) 

b_ z-e_ l (~+-~-) I~+ 
- -  2 - - ~ _  A1 [ P  

b+ A~_~+ 1 [ Ac ]-(~-~/~-1~ 
-k 2 - -  ~------~ 2 + 2(d  - -  1) k - F - ]  (A*2 - -  A22) 

(A.10) 

Since we only want to solve to lowest order in ] P l, and since it is evident 
from these equations that 

ac - -  ( A J P )  v(e-1) = O([ P l (1-~+)/~+) (A.11) 

we will replace (A~/P)-Ia-2)/(a- l)  on the rhs of these equations by a~ -(~-2). By 
substituting the sum of Eqs. (A.8) and (A.9) into (A. 10) and subtracting and 
adding together (A.8) and (A.9), we can write the following three equations 
instead of (A.8)-(A.10): 

o~_ b_Al~,_~_]p ](~+_~_>/~+ c% b A ~-~+ 
2 - - ~ _  2 - - ~ +  + ~ 

= AIA~(b_AT~_  ] p 1(~+-~_)/~+ __ b + A ~ + )  (A.12) 

b _ A z  - I P § b+A~ -~+ - -  (d -- 1) a~ -2 (A.13) 

b+A~ -~+ - -  b_All -~-  I P ](n+--~-)/e+ A2 --  A1 
(d -- 1) a a-z 

C 

(A.14) 

For the case where ~+ > c~_ we may discard in these equations 
the terms containing I PlC=+-=-)/~+, which is then a small quantity. 
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The  equat ions  can then  be solved quite easily to  yield 

A2 = 1�89 - -  e % ) ( d -  1)b+a~ -~ i z/=+ 

a z  = [o,+/(2 - o`+)l & 

(A.15) 

(A.16)  

plus  the  fol lowing equa t ion  for  T: 

o`+ [(2 - -  ~+)(d - -  l )  b+a~-2P I (1-~+)/~+ = at - -  (/I~/P) ll(a-~) (A.17) 

F o r  the  case where o`+ = o`_ we m a y  no t  d iscard  those  terms,  since they  now 
include ] P [0. A0 is de termined,  in b o t h  cases, by  Eq. (A.7) and  it is, in 
general ,  no t  equal  to  zero,  except  when bo th  o`+ = o`_ and  b+ = b _ ,  or  
when o`+ ----- o`_ = o  ̀tends  to zero. Final ly ,  we would  like to  po in t  out  that ,  
as m a y  easily be checked,  any  o ther  ansatz  for  the so lu t ion  besides (A.6) 
leads  to  an  inconsis tency in the  equat ions ;  hence this is the only possible  
fo rm for  the solut ion.  
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